Skip to content

llmcompressor.entrypoints.oneshot

Oneshot compression entrypoint for post-training model optimization.

Provides the main oneshot compression entry point for applying quantization, pruning, and other compression techniques to pre-trained models without additional training. Supports calibration-based compression with various pipeline configurations for efficient model optimization.

Classes:

  • Oneshot

    Class responsible for carrying out one-shot calibration on a pretrained model.

Functions:

  • oneshot

    Performs oneshot calibration on a model.

Oneshot

Oneshot(log_dir: Optional[str] = 'sparse_logs', **kwargs)

Class responsible for carrying out one-shot calibration on a pretrained model.

This class handles the entire lifecycle of one-shot calibration, including preprocessing (model and tokenizer/processor initialization), model optimization (quantization or sparsification), and postprocessing (saving outputs). The intructions for model optimization can be specified by using a recipe.

  • Input Keyword Arguments: kwargs are parsed into:

    • model_args: Arguments for loading and configuring a pretrained model (e.g., AutoModelForCausalLM).
    • dataset_args: Arguments for dataset-related configurations, such as calibration dataloaders.
    • recipe_args: Arguments for defining and configuring recipes that specify optimization actions.

    Parsers are defined in src/llmcompressor/args/.

  • Lifecycle Overview: The oneshot calibration lifecycle consists of three steps:

    1. Preprocessing:
      • Instantiates a pretrained model and tokenizer/processor.
      • Ensures input and output embedding layers are untied if they share tensors.
      • Patches the model to include additional functionality for saving with quantization configurations.
    2. Oneshot Calibration:
      • Optimizes the model using a global CompressionSession and applies recipe-defined modifiers (e.g., GPTQModifier, SparseGPTModifier)
    3. Postprocessing:
      • Saves the model, tokenizer/processor, and configuration to the specified output_dir.
  • Usage:

    oneshot = Oneshot(model=model, recipe=recipe, dataset=dataset)
    oneshot()
    
    # Access the processed components
    model = oneshot.model
    processor = oneshot.processor
    recipe = oneshot.recipe
    

Methods: init(**kwargs): Initializes the Oneshot object by parsing input arguments, performing preprocessing, and setting instance attributes.

__call__(**kwargs):
    Performs the one-shot calibration process by preparing a calibration
    dataloader, applying recipe modifiers to the model, and executing
    postprocessing steps.

save():
    Saves the calibrated model and tokenizer/processor to the specified
    `output_dir`. Supports saving in compressed formats based on model
    arguments.

apply_recipe_modifiers(calibration_dataloader, **kwargs):
    Applies lifecycle actions (e.g., `initialize`, `finalize`) using modifiers
    defined in the recipe. Each action is executed via the global
    `CompressionSession`.

Initializes the Oneshot class with provided arguments.

Parses the input keyword arguments into model_args, dataset_args, and recipe_args. Performs preprocessing to initialize the model and tokenizer/processor.

Parameters:

  • model_args

    ModelArguments parameters, responsible for controlling model loading and saving logic

  • dataset_args

    DatasetArguments parameters, responsible for controlling dataset loading, preprocessing and dataloader loading

  • recipe_args

    RecipeArguments parameters, responsible for containing recipe-related parameters

  • output_dir

    Path to save the output model after carrying out oneshot

  • log_dir

    (Optional[str], default: 'sparse_logs' ) –

    Path to save logs during oneshot run. Nothing is logged to file if None.

Methods:

Source code in llmcompressor/entrypoints/oneshot.py
def __init__(
    self,
    log_dir: Optional[str] = "sparse_logs",
    **kwargs,
):
    """
    Initializes the `Oneshot` class with provided arguments.

    Parses the input keyword arguments into `model_args`, `dataset_args`, and
    `recipe_args`. Performs preprocessing to initialize the model and
    tokenizer/processor.

    :param model_args: ModelArguments parameters, responsible for controlling
        model loading and saving logic
    :param dataset_args: DatasetArguments parameters, responsible for controlling
        dataset loading, preprocessing and dataloader loading
    :param recipe_args: RecipeArguments parameters, responsible for containing
        recipe-related parameters
    :param output_dir: Path to save the output model after carrying out oneshot
    :param log_dir: Path to save logs during oneshot run.
        Nothing is logged to file if None.
    """
    # Set up logging
    if log_dir:
        os.makedirs(log_dir, exist_ok=True)
        date_str = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
        logger.add(
            f"{log_dir}/oneshot_{date_str}.log",
            level="DEBUG",
        )

    model_args, dataset_args, recipe_args, _, output_dir = parse_args(**kwargs)

    self.model_args = model_args
    self.dataset_args = dataset_args
    self.recipe_args = recipe_args
    self.output_dir = output_dir

    # initialize the model and processor
    pre_process(model_args)

    # Set instance attributes
    self.model = self.model_args.model
    self.processor = self.model_args.processor
    self.recipe = self.recipe_args.recipe

apply_recipe_modifiers

apply_recipe_modifiers(
    calibration_dataloader: Optional[DataLoader],
    recipe_stage: Optional[str] = None,
)

Applies recipe modifiers to the model during the lifecycle.

The modifiers are defined in the recipe and executed via lifecycle actions (initialize, finalize) through the global CompressionSession.

Source code in llmcompressor/entrypoints/oneshot.py
def apply_recipe_modifiers(
    self,
    calibration_dataloader: Optional[DataLoader],
    recipe_stage: Optional[str] = None,
):
    """
    Applies recipe modifiers to the model during the lifecycle.

    The modifiers are defined in the recipe and executed via lifecycle actions
    (`initialize`, `finalize`) through the global `CompressionSession`.


    :param: calibration_dataloader: Dataloader for calibration data.

    Raises:
        RuntimeError: If any modifier fails during execution.
    """

    session = active_session()
    session.reset()

    # (Helen INFERENG-661): validate recipe modifiers before intialization
    session.initialize(
        model=self.model,
        start=-1,
        recipe=self.recipe,
        recipe_stage=recipe_stage,
        recipe_args=self.recipe_args.recipe_args,
        calib_data=calibration_dataloader,
    )
    user_pipeline = self.dataset_args.pipeline
    modifiers = session.lifecycle.recipe.modifiers
    pipeline = CalibrationPipeline.from_modifiers(modifiers, user=user_pipeline)
    pipeline(
        self.model,
        calibration_dataloader,
        self.dataset_args,
    )

    session.finalize()

oneshot

oneshot(
    model: Union[str, PreTrainedModel],
    distill_teacher: Optional[str] = None,
    config_name: Optional[str] = None,
    tokenizer: Optional[
        Union[str, PreTrainedTokenizerBase]
    ] = None,
    processor: Optional[Union[str, ProcessorMixin]] = None,
    cache_dir: Optional[str] = None,
    use_auth_token: bool = False,
    precision: str = "auto",
    tie_word_embeddings: bool = False,
    trust_remote_code_model: bool = False,
    save_compressed: bool = True,
    model_revision: str = "main",
    recipe: Optional[Union[str, List[str]]] = None,
    recipe_args: Optional[List[str]] = None,
    clear_sparse_session: bool = False,
    stage: Optional[str] = None,
    dataset: Optional[
        Union[str, Dataset, DatasetDict]
    ] = None,
    dataset_config_name: Optional[str] = None,
    dataset_path: Optional[str] = None,
    num_calibration_samples: int = 512,
    shuffle_calibration_samples: bool = True,
    max_seq_length: int = 384,
    pad_to_max_length: bool = True,
    text_column: str = "text",
    concatenate_data: bool = False,
    streaming: bool = False,
    overwrite_cache: bool = False,
    preprocessing_num_workers: Optional[int] = None,
    min_tokens_per_module: Optional[float] = None,
    calibrate_moe_context: bool = False,
    quantization_aware_calibration: bool = True,
    output_dir: Optional[str] = None,
    log_dir: Optional[str] = "sparse_logs",
    **kwargs
) -> PreTrainedModel

Performs oneshot calibration on a model.

Model arguments

Parameters:

  • model

    (Union[str, PreTrainedModel]) –

    A pretrained model identifier from huggingface.co/models or a path to a local model. Required parameter.

  • distill_teacher

    (Optional[str], default: None ) –

    Teacher model (a trained text generation model) for distillation.

  • config_name

    (Optional[str], default: None ) –

    Pretrained config name or path if not the same as model_name.

  • tokenizer

    (Optional[Union[str, PreTrainedTokenizerBase]], default: None ) –

    Pretrained tokenizer name or path if not the same as model_name.

  • processor

    (Optional[Union[str, ProcessorMixin]], default: None ) –

    Pretrained processor name or path if not the same as model_name.

  • cache_dir

    (Optional[str], default: None ) –

    Where to store the pretrained data from huggingface.co.

  • use_auth_token

    (bool, default: False ) –

    Whether to use Hugging Face auth token for private models.

  • precision

    (str, default: 'auto' ) –

    Precision to cast model weights to, default to auto.

  • tie_word_embeddings

    (bool, default: False ) –

    Whether the model's input and output word embeddings should be tied.

  • trust_remote_code_model

    (bool, default: False ) –

    Whether to allow for custom models to execute their own modeling files.

  • save_compressed

    (bool, default: True ) –

    Whether to compress sparse models during save.

  • model_revision

    (str, default: 'main' ) –

    The specific model version to use (can be branch name, tag, or commit id). # Recipe arguments

  • recipe

    (Optional[Union[str, List[str]]], default: None ) –

    Path to a LLM Compressor sparsification recipe.

  • recipe_args

    (Optional[List[str]], default: None ) –

    List of recipe arguments to evaluate, in the format "key1=value1", "key2=value2".

  • clear_sparse_session

    (bool, default: False ) –

    Whether to clear CompressionSession/ CompressionLifecycle data between runs.

  • stage

    (Optional[str], default: None ) –

    The stage of the recipe to use for oneshot. # Dataset arguments

  • dataset

    (Optional[Union[str, Dataset, DatasetDict]], default: None ) –

    The name of the dataset to use (via the datasets library).

  • dataset_config_name

    (Optional[str], default: None ) –

    The configuration name of the dataset to use.

  • dataset_path

    (Optional[str], default: None ) –

    Path to a custom dataset. Supports json, csv, dvc.

  • num_calibration_samples

    (int, default: 512 ) –

    Number of samples to use for one-shot calibration.

  • shuffle_calibration_samples

    (bool, default: True ) –

    Whether to shuffle the dataset before calibration.

  • max_seq_length

    (int, default: 384 ) –

    Maximum total input sequence length after tokenization.

  • pad_to_max_length

    (bool, default: True ) –

    Whether to pad all samples to max_seq_length.

  • text_column

    (str, default: 'text' ) –

    Key to use as the text input to tokenizer/processor.

  • concatenate_data

    (bool, default: False ) –

    Whether to concatenate datapoints to fill max_seq_length.

  • streaming

    (bool, default: False ) –

    True to stream data from a cloud dataset.

  • overwrite_cache

    (bool, default: False ) –

    Whether to overwrite the cached preprocessed datasets.

  • preprocessing_num_workers

    (Optional[int], default: None ) –

    Number of processes for preprocessing.

  • min_tokens_per_module

    (Optional[float], default: None ) –

    Minimum percentage of tokens per module, relevant for MoE models.

  • calibrate_moe_context

    (bool, default: False ) –

    If during calibration, the MoE context should be enabled for the given model. This usually involves updating all MoE modules in the model for the duration of calibration.

  • quantization_aware_calibration

    (bool, default: True ) –

    Whether to enable quantization-aware calibration in the sequential pipeline. When True, quantization is applied during forward pass in calibration. When False, quantization is disabled during forward pass in calibration. Default is set to True. # Miscellaneous arguments

  • output_dir

    (Optional[str], default: None ) –

    Path to save the output model after calibration. Nothing is saved if None.

  • log_dir

    (Optional[str], default: 'sparse_logs' ) –

    Path to save logs during oneshot run. Nothing is logged to file if None.

Returns:

  • PreTrainedModel

    The calibrated PreTrainedModel

Source code in llmcompressor/entrypoints/oneshot.py
def oneshot(
    # Model arguments
    model: Union[str, PreTrainedModel],
    distill_teacher: Optional[str] = None,
    config_name: Optional[str] = None,
    tokenizer: Optional[Union[str, PreTrainedTokenizerBase]] = None,
    processor: Optional[Union[str, ProcessorMixin]] = None,
    cache_dir: Optional[str] = None,
    use_auth_token: bool = False,
    precision: str = "auto",
    tie_word_embeddings: bool = False,
    trust_remote_code_model: bool = False,
    save_compressed: bool = True,
    model_revision: str = "main",
    # Recipe arguments
    recipe: Optional[Union[str, List[str]]] = None,
    recipe_args: Optional[List[str]] = None,
    clear_sparse_session: bool = False,
    stage: Optional[str] = None,
    # Dataset arguments
    dataset: Optional[Union[str, "Dataset", "DatasetDict"]] = None,
    dataset_config_name: Optional[str] = None,
    dataset_path: Optional[str] = None,
    num_calibration_samples: int = 512,
    shuffle_calibration_samples: bool = True,
    max_seq_length: int = 384,
    pad_to_max_length: bool = True,
    text_column: str = "text",
    concatenate_data: bool = False,
    streaming: bool = False,
    overwrite_cache: bool = False,
    preprocessing_num_workers: Optional[int] = None,
    min_tokens_per_module: Optional[float] = None,
    calibrate_moe_context: bool = False,
    quantization_aware_calibration: bool = True,
    # Miscellaneous arguments
    output_dir: Optional[str] = None,
    log_dir: Optional[str] = "sparse_logs",
    **kwargs,
) -> PreTrainedModel:
    """
    Performs oneshot calibration on a model.

    # Model arguments
    :param model: A pretrained model identifier from huggingface.co/models or a path
        to a local model. Required parameter.
    :param distill_teacher: Teacher model (a trained text generation model)
        for distillation.
    :param config_name: Pretrained config name or path if not the same as
        model_name.
    :param tokenizer: Pretrained tokenizer name or path if not the same as
        model_name.
    :param processor: Pretrained processor name or path if not the same as
        model_name.
    :param cache_dir: Where to store the pretrained data from
        huggingface.co.
    :param use_auth_token: Whether to use Hugging Face auth token for private
        models.
    :param precision: Precision to cast model weights to, default to auto.
    :param tie_word_embeddings: Whether the model's input and output word embeddings
        should be tied.
    :param trust_remote_code_model: Whether to allow for custom models to execute
        their own modeling files.
    :param save_compressed: Whether to compress sparse models during save.
    :param model_revision: The specific model version to use (can be branch name,
        tag, or commit id).

    # Recipe arguments
    :param recipe: Path to a LLM Compressor sparsification recipe.
    :param recipe_args: List of recipe arguments to evaluate, in the
        format "key1=value1", "key2=value2".
    :param clear_sparse_session: Whether to clear CompressionSession/
        CompressionLifecycle data between runs.
    :param stage: The stage of the recipe to use for oneshot.

    # Dataset arguments
    :param dataset: The name of the dataset to use (via the datasets
        library).
    :param dataset_config_name: The configuration name of the dataset
        to use.
    :param dataset_path: Path to a custom dataset. Supports json, csv, dvc.
    :param num_calibration_samples: Number of samples to use for one-shot
        calibration.
    :param shuffle_calibration_samples: Whether to shuffle the dataset before
        calibration.
    :param max_seq_length: Maximum total input sequence length after tokenization.
    :param pad_to_max_length: Whether to pad all samples to `max_seq_length`.
    :param text_column: Key to use as the `text` input to tokenizer/processor.
    :param concatenate_data: Whether to concatenate datapoints to fill
        max_seq_length.
    :param streaming: True to stream data from a cloud dataset.
    :param overwrite_cache: Whether to overwrite the cached preprocessed datasets.
    :param preprocessing_num_workers: Number of processes for
        preprocessing.
    :param min_tokens_per_module: Minimum percentage of tokens per
        module, relevant for MoE models.
    :param calibrate_moe_context: If during calibration, the MoE context should be
        enabled for the given model. This usually involves updating all MoE modules
        in the model for the duration of calibration.
    :param quantization_aware_calibration: Whether to enable quantization-aware
        calibration in the sequential pipeline. When True, quantization is applied
        during forward pass in calibration. When False, quantization is disabled
        during forward pass in calibration. Default is set to True.

    # Miscellaneous arguments
    :param output_dir: Path to save the output model after calibration.
        Nothing is saved if None.
    :param log_dir: Path to save logs during oneshot run.
        Nothing is logged to file if None.

    :return: The calibrated PreTrainedModel
    """

    # pass all args directly into Oneshot
    local_args = {
        k: v for k, v in locals().items() if k not in ("local_args", "kwargs")
    }
    one_shot = Oneshot(**local_args, **kwargs)
    one_shot()

    return one_shot.model