Skip to content

llmcompressor.core.session

Compression session management for LLM compression workflows.

Provides the main CompressionSession class for managing compression workflows, including lifecycle management, event handling, callback registration, and state tracking.

Classes:

CompressionSession

CompressionSession()

A session for compression that holds the lifecycle and state for the current compression session

Methods:

  • event

    Invoke an event for current CompressionSession.

  • finalize

    Finalize the session for compression. This will run the finalize method

  • get_serialized_recipe

    :return: serialized string of the current compiled recipe

  • initialize

    Initialize the session for compression. This will run the initialize method

  • log

    Log model and loss information for the current event type

  • reset

    Reset the session to its initial state

  • reset_stage

    Reset the session for starting a new stage, recipe and model stays intact

Attributes:

Source code in llmcompressor/core/session.py
def __init__(self):
    self._lifecycle = CompressionLifecycle()

lifecycle property

lifecycle: CompressionLifecycle

Lifecycle is used to keep track of where we are in the compression process and what modifiers are active. It also Provides the ability to invoke events on the lifecycle.

Returns:

state property

state: State

State of the current compression session. State instance is used to store all information such as the recipe, model optimizer, data, etc. that is needed for compression.

Returns:

  • State

    the current state of the session

event

event(
    event_type: EventType,
    batch_data: Optional[Any] = None,
    loss: Optional[Any] = None,
    **kwargs
) -> ModifiedState

Invoke an event for current CompressionSession.

Parameters:

  • event_type

    (EventType) –

    the event type to invoke

  • batch_data

    (Optional[Any], default: None ) –

    the batch data to use for the event

  • loss

    (Optional[Any], default: None ) –

    the loss to use for the event if any

  • kwargs

    additional kwargs to pass to the lifecycle's event method

Returns:

  • ModifiedState

    the modified state of the session after invoking the event

Source code in llmcompressor/core/session.py
def event(
    self,
    event_type: EventType,
    batch_data: Optional[Any] = None,
    loss: Optional[Any] = None,
    **kwargs,
) -> ModifiedState:
    """
    Invoke an event for current CompressionSession.

    :param event_type: the event type to invoke
    :param batch_data: the batch data to use for the event
    :param loss: the loss to use for the event if any
    :param kwargs: additional kwargs to pass to the lifecycle's event method
    :return: the modified state of the session after invoking the event
    """
    mod_data = self._lifecycle.event(
        event_type=event_type, batch_data=batch_data, loss=loss, **kwargs
    )
    return ModifiedState(
        model=self.state.model,
        optimizer=self.state.optimizer,
        loss=self.state.loss,  # TODO: is this supposed to be a different type?
        modifier_data=mod_data,
    )

finalize

finalize(**kwargs) -> ModifiedState

Finalize the session for compression. This will run the finalize method for each modifier in the session's lifecycle. This will also set the session's state to the finalized state.

Parameters:

  • kwargs

    additional kwargs to pass to the lifecycle's finalize method

Returns:

  • ModifiedState

    the modified state of the session after finalizing

Source code in llmcompressor/core/session.py
def finalize(self, **kwargs) -> ModifiedState:
    """
    Finalize the session for compression. This will run the finalize method
    for each modifier in the session's lifecycle. This will also set the session's
    state to the finalized state.

    :param kwargs: additional kwargs to pass to the lifecycle's finalize method
    :return: the modified state of the session after finalizing
    """
    mod_data = self._lifecycle.finalize(**kwargs)

    return ModifiedState(
        model=self.state.model,
        optimizer=self.state.optimizer,
        loss=self.state.loss,
        modifier_data=mod_data,
    )

get_serialized_recipe

get_serialized_recipe() -> Optional[str]

Returns:

  • Optional[str]

    serialized string of the current compiled recipe

Source code in llmcompressor/core/session.py
def get_serialized_recipe(self) -> Optional[str]:
    """
    :return: serialized string of the current compiled recipe
    """
    recipe = self.lifecycle.recipe

    if recipe is not None and hasattr(recipe, "yaml"):
        return recipe.yaml()

    logger.warning("Recipe not found in session - it may have been reset")

initialize

initialize(
    recipe: Union[
        str, List[str], Recipe, List[Recipe], None
    ] = None,
    recipe_stage: Union[str, List[str], None] = None,
    recipe_args: Union[Dict[str, Any], None] = None,
    model: Optional[Any] = None,
    teacher_model: Optional[Any] = None,
    optimizer: Optional[Any] = None,
    attach_optim_callbacks: bool = True,
    train_data: Optional[Any] = None,
    val_data: Optional[Any] = None,
    test_data: Optional[Any] = None,
    calib_data: Optional[Any] = None,
    copy_data: bool = True,
    start: Optional[float] = None,
    steps_per_epoch: Optional[int] = None,
    batches_per_step: Optional[int] = None,
    loggers: Union[
        None, LoggerManager, List[BaseLogger]
    ] = None,
    **kwargs
) -> ModifiedState

Initialize the session for compression. This will run the initialize method for each modifier in the session's lifecycle. This will also set the session's state to the initialized state.

Parameters:

  • recipe

    (Union[str, List[str], Recipe, List[Recipe], None], default: None ) –

    the recipe to use for the compression, can be a path to a recipe file, a raw recipe string, a recipe object, or a list of recipe objects.

  • recipe_stage

    (Union[str, List[str], None], default: None ) –

    the stage to target for the compression

  • recipe_args

    (Union[Dict[str, Any], None], default: None ) –

    the args to use for overriding the recipe defaults

  • model

    (Optional[Any], default: None ) –

    the model to compress

  • teacher_model

    (Optional[Any], default: None ) –

    the teacher model to use for knowledge distillation

  • optimizer

    (Optional[Any], default: None ) –

    the optimizer to use for the compression

  • attach_optim_callbacks

    (bool, default: True ) –

    True to attach the optimizer callbacks to the compression lifecycle, False otherwise

  • train_data

    (Optional[Any], default: None ) –

    the training data to use for the compression

  • val_data

    (Optional[Any], default: None ) –

    the validation data to use for the compression

  • test_data

    (Optional[Any], default: None ) –

    the testing data to use for the compression

  • calib_data

    (Optional[Any], default: None ) –

    the calibration data to use for the compression

  • copy_data

    (bool, default: True ) –

    True to copy the data, False otherwise

  • start

    (Optional[float], default: None ) –

    the start epoch to use for the compression

  • steps_per_epoch

    (Optional[int], default: None ) –

    the number of steps per epoch to use for the compression

  • batches_per_step

    (Optional[int], default: None ) –

    the number of batches per step to use for compression

  • loggers

    (Union[None, LoggerManager, List[BaseLogger]], default: None ) –

    the metrics manager to setup logging important info and milestones to, also accepts a list of BaseLogger(s)

  • kwargs

    additional kwargs to pass to the lifecycle's initialize method

Returns:

  • ModifiedState

    the modified state of the session after initializing

Source code in llmcompressor/core/session.py
def initialize(
    self,
    recipe: Union[str, List[str], "Recipe", List["Recipe"], None] = None,
    recipe_stage: Union[str, List[str], None] = None,
    recipe_args: Union[Dict[str, Any], None] = None,
    model: Optional[Any] = None,
    teacher_model: Optional[Any] = None,
    optimizer: Optional[Any] = None,
    attach_optim_callbacks: bool = True,
    train_data: Optional[Any] = None,
    val_data: Optional[Any] = None,
    test_data: Optional[Any] = None,
    calib_data: Optional[Any] = None,
    copy_data: bool = True,
    start: Optional[float] = None,
    steps_per_epoch: Optional[int] = None,
    batches_per_step: Optional[int] = None,
    loggers: Union[None, LoggerManager, List[BaseLogger]] = None,
    **kwargs,
) -> ModifiedState:
    """
    Initialize the session for compression. This will run the initialize method
    for each modifier in the session's lifecycle. This will also set the session's
    state to the initialized state.

    :param recipe: the recipe to use for the compression, can be a path to a
        recipe file, a raw recipe string, a recipe object, or a list
        of recipe objects.
    :param recipe_stage: the stage to target for the compression
    :param recipe_args: the args to use for overriding the recipe defaults
    :param model: the model to compress
    :param teacher_model: the teacher model to use for knowledge distillation
    :param optimizer: the optimizer to use for the compression
    :param attach_optim_callbacks: True to attach the optimizer callbacks to the
        compression lifecycle, False otherwise
    :param train_data: the training data to use for the compression
    :param val_data: the validation data to use for the compression
    :param test_data: the testing data to use for the compression
    :param calib_data: the calibration data to use for the compression
    :param copy_data: True to copy the data, False otherwise
    :param start: the start epoch to use for the compression
    :param steps_per_epoch: the number of steps per epoch to use for the
        compression
    :param batches_per_step: the number of batches per step to use for
        compression
    :param loggers: the metrics manager to setup logging important info
        and milestones to, also accepts a list of BaseLogger(s)
    :param kwargs: additional kwargs to pass to the lifecycle's initialize method
    :return: the modified state of the session after initializing
    """
    mod_data = self._lifecycle.initialize(
        recipe=recipe,
        recipe_stage=recipe_stage,
        recipe_args=recipe_args,
        model=model,
        teacher_model=teacher_model,
        optimizer=optimizer,
        attach_optim_callbacks=attach_optim_callbacks,
        train_data=train_data,
        val_data=val_data,
        test_data=test_data,
        calib_data=calib_data,
        copy_data=copy_data,
        start=start,
        steps_per_epoch=steps_per_epoch,
        batches_per_step=batches_per_step,
        loggers=loggers,
        **kwargs,
    )

    return ModifiedState(
        model=self.state.model,
        optimizer=self.state.optimizer,
        loss=self.state.loss,
        modifier_data=mod_data,
    )

log

log(event_type: EventType, loss: Optional[Any] = None)

Log model and loss information for the current event type

Parameters:

  • event_type

    (EventType) –

    the event type to log for

  • loss

    (Optional[Any], default: None ) –

    the loss to log if any

Source code in llmcompressor/core/session.py
def log(self, event_type: EventType, loss: Optional[Any] = None):
    """
    Log model and loss information for the current event type

    :param event_type: the event type to log for
    :param loss: the loss to log if any
    """
    self._log_model_info()
    self._log_loss(event_type=event_type, loss=loss)

reset

reset()

Reset the session to its initial state

Source code in llmcompressor/core/session.py
def reset(self):
    """
    Reset the session to its initial state
    """
    self._lifecycle.reset()

reset_stage

reset_stage()

Reset the session for starting a new stage, recipe and model stays intact

Source code in llmcompressor/core/session.py
def reset_stage(self):
    """
    Reset the session for starting a new stage, recipe and model stays intact
    """
    self.lifecycle.initialized_ = False
    self.lifecycle.finalized = False